ABGS MIDDLE SCHOOL Unit Planner

ALGEBRA 1

UNIT 6 – Polynomials & Quadratic Functions

Teacher (s)	T. Moran D. Topping	Subject Group and Discipline	Advanced 8 Algebra 1		
Unit Title	Unit 6 Polynomials/Quadratic Functions	MYP Year	4	Unit Duration	8 – 9 WEEKS

INQUIRY? Establishing the purpose of the unit

Key Concept	Related Concept(s)	Global Context
Relationships	Simplification, Forms, and Equivalence	Identities and Relationships

Statement of Inquiry
Conceptual Understanding : Understanding the relationship between equivalent and forms of the expressions and the allowance for simplification.
Statement of Inquiry: Establishing patterns in the natural world can help in understanding the simplification of relationships, identities and their forms and equivalence.

Inquiry Questions

Factual –How can you write quadratic expressions and functions in different but equivalent forms and what do the different forms tell you about the function's graph?

Conceptual – How can we use properties to simplify and evaluate relationships?

Debatable – How can one arrive at the same answer involving polynomials using different processes?

MYP OBJECTIVES			
NYS Next Generation Standards	IB Objectives		
<u>NY-8.F.3</u> : Interpret the equation $y = mx + b$ as defining a linear function whose graph is a straight line. Recognize examples of functions that are linear and non-linear.	Objective A: Knowing and Understandingi. Students select appropriate mathematics when solving		
e.g., The function $A = s^2$ given the area of a square as a function of its side length is not linear because its graph contains the points $(1, 1), (2, 4)$ and $(3, 9)$ which are not on a straight line.	simple problems in familiar and unfamiliar situations. ii. Students apply the selected mathematics successfully when solving problems.		
Note: Function notation is not required in Grade 8.			
<u>AI.A.APR.1</u> : Add, subtract, and multiply polynomials and recognize that the result of the operations is also a polynomial. This forms a system analogous to the integers.	Objective B: Investigating Patterns		
<u>Note</u> : This standard is a fluency recommendation for Algebra I. Fluency in adding, subtracting, and multiplying polynomials supports students throughout their work in algebra as well as	 i. Students select and apply mathematical problem-solving techniques to discover complex patterns. 		
in their symbolic work with functions.	ii. Students describe patterns as relationships and/or general		
AI-A.APR.3: Identify zeros of polynomial functions when suitable factorizations are available. (Shared standard with	rules consistent with correct findings.		
Algebra II)	iii. Students verify and justify relationships and/or general rules.		

Note: Algebra I task will focus on identifying the zeros of	Objective C : Communicating
quadratic and cubic polynomial functions. For tasks that involve	
finding the zeros of cubic functions, the linear and quadratic	i. Students use appropriate mathematical language (notation,
factors of the cubic polynomial function will be given (e.g., find	symbols, and terminology) in both oral and written
the zeros of $P(x) = (x - 2)(x^2 - 9)$.	explanations.
AI-A.SSE.1: Interpret expressions that represent a quantity in terms of its context. *	ii. Students use appropriate forms of mathematical
AI.A.SSE.1a : Write the standard form of a given polynomial and identify the terms, coefficients, degree, leading coefficient, and constant term.	representation to present information. iii. Students move between different forms of mathematical representation.
<u>AI.A.SSE.1b</u> : Interpret expressions by viewing one or more of their parts as a single entity.	Objective D : Applying mathematics in real-life context.
e.g., Interpret $P(1 + r)^n$ as a product of P and a factor not depending on P .	i. Students identify elements of authentic real-life situations.
Note: This standard is a fluency expectation for Algebra I.	ii. Students select appropriate mathematical strategies when
Fluency in transforming expressions and chunking (seeing parts	solving real-life situations.
of an expression as a single object: is essential in factoring,	
completing the square and other mindful algebraic calculations.	iv. Students explain the degree of accuracy of a solution.
<u>AI-A.SSE.2</u> : Recognize and use the structure of an expression to	y Students evolution whether a solution makes sense in the
identify ways to rewrite it. (Shared standard with Algebra II).	v. Students explain whether a solution makes sense in the
e.g.,	
$x^3 - x^2 - x = x(x^2 - x - 1)$	
$53^2 - 47^2 = (53 + 47)(53 - 47)$	
$16x^2 - 36 = (4x)^2 - (6)^2 = (4x + 6)(4x - 6) =$	
4(2x+3)(2x-3) or	
$16x^2 - 36 = 4(4x^2 - 9) = 4(2x + 3)(2x - 3)$	
$-2x^{2} + 8x + 10 = -2(x^{2} - 4x - 5) = -2(x - 5)(x + 1)$	
$x^{4} + 6x^{2} - 7 = (x^{2} + 7)(x^{2} - 1) = (x^{2} + 7)(x + 1)(x - 1)$	

<u>Note</u>: Algebra I expressions are limited to numerical and polynomial expressions in one variable. Use factoring techniques such as factoring out a greatest common factor, factoring the difference of two perfect squares, factoring trinomials of the form $ax^2 + bx + c$ with a lead coefficient of 1 or a combination of methods to factor completely. Factoring will not involve factoring by grouping and factoring the sum and difference of cubes.

<u>AI-A.SSE.3</u>: Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (Shared standard with Algebra II)

<u>AI-A.SSE.3c</u>: Use the properties of exponents to rewrite exponential expressions. (Shared standard with Algebra II) e.g., • $3^{2x} = (3^2)^x = 9^x \cdot 3^{2x+3} = 3^{2x} \cdot 3^3 = 9^x \cdot 27$

Note: Exponential expressions will include those with integer exponents, as well as those whose exponents are linear expressions. Any linear term in those expressions will have an integer coefficient.

<u>AI-N.RN.3</u>: Use properties and operations to understand the different forms of rational and irrational numbers.

a) Perform all four arithmetic operations and apply properties to generate equivalent forms of rational numbers and square roots.

<u>Note</u>: Tasks include rationalizing numerical denominators of the form $\frac{a}{\sqrt{b}}$ where *a* is an integer and *b* is a natural number.

<u>AI-A.REI.4</u>: Solve quadratic equations in one variable.

Note: Solutions may include simplifying radicals.

AI-REI.4a: Use the method of completing the square to	
transform any quadratic equation in x into an equation of the	
form $(x - p)^2 = q$ that has the same solutions. Understand	
that the quadratic formula is a derivative of this process.	
Note: When utilizing the method of completing the square, the	
quadratic's leading coefficient will be 1 and the coefficient of	
the linear term will be limited to even (after the possible	
factoring out of a GCF). Students in Algebra I should be able to	
complete the square in which manipulating the given quadratic	
equation yields an integer value for q.	
AI-REI.4b: Solve quadratic equations by:	
i) inspection,	
ii) taking the square root,	
iii) factoring,	
iiii) completing the square,	
v) the quadratic formula, and	
vi) graphing.	
Recognize when the process yields no real solutions. (Shared	
standard with Algebra II)	
Notes:	
 Solutions may include simplifying radicals or writing 	
solutions in simplest radical form.	
• An example for inspection would be $x^2 = 9$, where a	
student should know that the solutions would include	
7 amd -7.	
 When utilizing the quadratic formula, there are no 	
coefficient limits.	
 The discriminant is a sufficient way to recognize when 	
the process yields no real solutions.	
AI-A.REI.7a: Solve a system, with rational solutions consisting of	
a linear equation and a quadratic equation (parabolas only) in	

two varia	ables both algebraically and graphically. (Shared
standard	l with Algebra II)
AI-A.REI	.11 : Given the equations $y = f(x)$ and $y = g(x)$:
i) recogn	ize that each x –coordinate of the intersection(s) is the
solution	to the equation $f(x) = g(x)$.
ii) find th	ne solutions approximately using technology to graph
the func	tions or make tables of values; and
iii) inter	pret the solution in context. * (Shared standard with
Algebra	II)
Notes: A	lgebra I tasks are limited to cases where $f(x)$ and
g(x) are	e linear, polynomial, absolute value, and exponential
function	s of the form $f(x) = a(b)^x$ where $a > 0$ and
b > 0, (1)	$b \neq 1$).
Students	s should be taught to find the solutions approximately
by using	technology to graph the functions and by making
choose of	values. When solving any problem, students can
	For a function that models a relationship between two
AI-F.IF.4	. For a function that models a relationship between two
i) intorn	:s.
n) interpi	et key leatures of graphs and tables in terms of the
ii) skotch	s, and granhs showing key features given a verbal description
of the re	lationshin (Shared standard with Algebra II)
Notes:	
• A	lgebra I key features include the following: intercents
7	eros: intervals where the function is increasing.
d	ecreasing, positive or negative: maxima, minima; and
S	vmmetries.
• T	asks have a real-world context and are limited to the
f	ollowing functions: linear, guadratic, square root.
p.	iece-wise defined (including step and absolute value)

and exponential functions of the form $f(x) = a(b)^x$
where $a > 0$ and $b > 0$ ($b \neq 1$).
AI-F.IF.7: Graph functions and show key features of the graph
by hand and by using technology where appropriate* (Share
standard with Algebra II)
AI-F.IF.7a: Graph linear, quadratic, and exponential functions
and show key features.
Notes:
• Algebra I key features include the following: intercepts,
zeros; intervals where the function is increasing,
decreasing, positive or negative; maxima, minima; and
symmetries.
• Exponential functions of the form $f(x) = a(b)^x$ where
$a > 0$ and $b > 0$ $(b \neq 1)$.
<u>AI-F.IF.8</u> : Write a function in different but equivalent forms to
reveal and explain different properties of the function. (Shared
standard with Algebra II)
<u>AI.F.IF.8a</u> : For a quadratic function, use an algebraic process to
find zeros, maxima, minima, and symmetry of the graph and
interpret these in terms of context.
Note: Algebraic processes include but not limited to factoring,
completing the square, use of the quadratic formula and the
use of the axis of symmetry.

Summative Assessment	Relationship Between Summative Assessment Task
	and Statement of Inquiry
Summative Assessment Outline of summative assessment task(s) including assessment criteria: Goal: Establishing patterns can help in understanding how forms and their equivalences can simplify different situations in the real-world Role: You own an in-ground pool company, Lagoon Pools. Audience: Potential Customers Situation: A homeowner needed help designing a large, picturesque backyard that included a rectangle pool, a walkway around the pool and a hot tub within the pool close to the house. The homeowner gave the dimensions of the backyard, walkway, and hot tub in the form of binomials, The dimensions of the backyard are $(10x + 5)$ by $(15x + 6)$. The dimensions of the pool are $(6x + 4)$ by $(4x + 2)$. The dimensions of the walkway around the pool are $(2x)$ by $(6x + 4)$. The dimensions of the hot tub are $(2x)$ by $(x - 6)$. Using the information above: 1. Draw a model of the yard, not to scale, to depict the layout of the pool, walkway, and hot tub. 2. Calculate the area of the yard, pool, walkway, and hot tub. 3. Calculate the difference between the yard and the pool. 4. Calculate the difference between the walkway and the pool.	Relationship Between Summative Assessment Task and Statement of Inquiry Establishing patterns in the natural world can help in understanding the simplification of relationships, identities and their forms and equivalences.
 5. Calculate the difference between the pool and the hot tub. 6. Use the value of x = 6 to determine the area of the yard and the pool. 7. Determine the percentage of the yard that is represented by the pool. Determine the percentage of the pool that is 	8. By your calculations, is the owner correct to determine if the
represented by the hot tub.	yard is large enough to put in the pool?

Approaches to Learning (ATL)

Thinking: Draw justifiable conclusion and generalizations from investigating patterns.

Communication: Keep a regular journal during the investigation to maintain a record of reflections.

ACTION: Teaching and learning through inquiry

Content	Learning Process
Determine the relationship between polynomial expressions	Learning Experiences and Teaching Strategies
and integers.	
Perform arithmetic operations with polynomials including	Direct Instruction
addition, subtraction and multiplication.	Group Activities
Combine like terms.	Independent Practice
Apply the distributive property.	Math Jeopardy
Factor polynomials and include cubic polynomials.	
Recognize special products such as difference of two perfect	
squares (DOTS) and Perfect Square Trinomials (PST).	
Simplify radicals.	
Understand the effect the discriminant has on the roots of the	
quadratic equation. Determine the number of roots of the	
equation by the discriminant.	
Understand when a quadratic equation or function has no real	
solution.	
Solve quadratic equations by: inspection; taking the square	
root; factoring; quadratic formula; or completing the square.	
Understand the zeros of the quadratic equation are called: root;	
solutions; x –intercepts; x -values or the point where the graph	
crossed the x —axis.	
Rewrite the quadratic equation in vertex form.	

Determine the vertex of a quadratic equation by vertex form,		
formula for axis of symmetry $x = \frac{-b}{2a}$ or from a graph of the		
quadratic function. Graph quadratic functions using tables of values or technology.		
VOCABULARY		Formative Assessment
Distributive Property Discriminant $b^2 - 4ac$ Radicals Radicand Index Standard Form of a Polynomial Term Like Terms (GCF) Greatest Common Factor:	Vertex $x = \frac{-b}{2q}$ Axis of Symmetry Minimum Value Maximum Value xintercept Degree of a Polynomial Variable Unlike Terms	Tests Homework Classwork Benchmark Algebra Common Core 1 Regent Differentiation TI-84 Graphing Calculator TI-30 Scientific Calculator Students' IEPs Real-Life Situations
(GMF) Greatest Common Monor Perfect Square Non-Perfect Square Zero Product Property Polynomial Binomial Quadratic Equation Quadratic Formula Factor Area Model for Factoring Factored Form	mial Factor) No Real Solution Zeros, Roots, Solution Leading Coefficient Monomial Trinomial Quadratic Function $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Complete the Square Diamond Method Vertex Form	Student Options With Additional Teacher Support (AIS)

Resources				
Teacher Created Worksheets	Computer Based Worksheets & Activities	Algebra Teachers' Activity Book		
Math Textbook	Delta Math	IXL		
Brain-Pop	www.jmap.org	Problem-Attic		
Teachers Pay Teachers	Kahn Academy	Kendrick Krause (YouTube)		

REFLECTION: Considering the planning, process and impact of the inquiry

Prior to Teaching the Unit	During Teaching	After Teaching the Unit
Why do we think that the unit or the	What difficulties did we encounter while	What were the learning outcomes of this
selection of topics will be interesting?	completing the unit or the summative	unit?
What do students already know, and	assessment task(s)?	How well did the summative assessment
what can they do?	What resources are proving useful, and	task serve to distinguish levels of
What have students encountered in this	what other resources do we need?	achievement? Was the task sufficiently
discipline before?	What student inquiries are emerging?	complex to allow students to reach the
What does my experience tell me about	What can we adjust or change?	highest levels?
what to expect in this unit?	What skills need more practice?	What evidence of learning can we
What attributes of the learning profile	What is the level of student engagement?	identify? What artefacts of learning
does this unit offer students	How can we scaffold learning for students	should we document?
opportunities to develop?	who need more guidance?	Which teaching strategies were effective?
What potential interdisciplinary	What is happening in the world right now	Why?
connections can we identify?	with which we could connect teaching	What was surprising?
What do we know about my students'	and learning in this unit?	What student-initiated action did we
preferences and patterns of interaction?	How well are the learning experiences	notice?
Are there any possible opportunities for	aligned with the unit's objectives?	What will we do differently next time?
meaningful service learning?	What opportunities am I hearing to help	How will we build on our experience to
What in the unit might be inspiring for	students explore the interpretative	plan the next unit?
community or personal projects?	nature of knowledge, including personal	How effectively did we differentiate
Could we develop authentic	biases that might be retained, revised or	learning in this unit?
opportunities for service learning?	rejected? (DP Theory of knowledge skills	
	development)	

How can we use my students'	What can students carry forward from
multilingualism as a resource for	this unit to the unit? to the next year/
learning?	level of study?
	Which subject groups could we work with
	next time?
	What did we learn from standardizing the
	assessment?