ABGS MIDDLE SCHOOL Unit Planner

ALGEBRA 1

UNIT 5 – Transformations of Functions

Teacher(s)	N. Davis T. Moran D. Topping	Subject Group and Discipline	Advanced 8 Algebra 1		
Unit Title	Unit 5 Transformation and Comparison of Functions	MYP Year	4	Unit Duration	4 – 5 WEEKS

INQUIRY? Establishing the purpose of the unit

Key Concept	Related Concept(s)	Global Context
Change	Models, Patterns, Form	Relationships

Statement of Inquiry
Conceptual Understanding : Transformed representations of functional models create a change in the form of the original functional model. Statement of Inquiry : Using representations to model the changes in the relationship of patterns in real-life situations.
Inquiry Questions
Factual: Which transformations can be applied to change the form and model of lines and curves?
Conceptual : What effect does performing a transformation on a function have on the relationship between the patterns in the original function?
Debatable: If the graph of a function has been transformed from its original function, then how has the function changed?

MYP OBJECTIVES			
NYS Next Generation Standards	IB Objectives		
<u>NY-8.G.1</u> : Verify experimentally the properties of rotations,	Objective A: Knowing and Understanding		
reflections and translations.			
<u>Notes</u>: A translation displaces every point in the plane by the	i: Students select appropriate mathematics when solving		
same distance (in the same direction) and can be described	simple problems in familiar and unfamiliar situations.		
using a vector.			
A rotation requires knowing the center/point of rotation and	ii: Students apply the selected mathematics successfully when		
the measure/direction of the angle of rotation.	solving problems.		
A line reflection requires a line and the knowledge of			
perpendicular bisectors.	iii: Students solve problems in a variety of contexts.		
<u>NY-8.G.3</u> : Describe the effect of dilations, translations, rotations			
and reflections on two-dimensional figures using coordinates.	Objective B: Investigating Patterns		
<u>Note:</u> Lines of reflection are limited to both axes and lines of			
the form $y = k$, where k is a constant. Rotations are limited to	i: Students select and apply mathematical problem-solving		
90 and 180 degrees about the origin. Unless otherwise	techniques to discover complex patterns.		
specified, rotations are assumed to be counterclockwise.			
	ii: Students describe patterns as relationships and/or general		
NOTE: NY-8 GIVEN FOR INFORMATION ONLY.	rules consistent with findings.		
<u>AI-F.BF.1</u> : Write a function that describes a relationship	iii: Students verify and justify relationships and/or general rules.		
between two quantities.* (Shared standard with Algebra II)			
Notes:	Objective C : Communicating		
• Algebra I tasks are limited to linear, quadratic and			
exponential functions of the form $f(x) = a(b)^x$ where	i: Students use appropriate mathematical language (notation,		
$a > 0$ and $b > 0$ ($b \neq 1$).	symbols and terminology) in both oral and written		
Work with geometric sequences may involve an	explanations.		
exponential equation/formula of the form $a_n = ar^{n-1}$,			
where a is the first term and r is the common ratio.	ii: Students use appropriate forms of mathematical		
• Sequences will be written explicitly and only in	representation to present information.		
subscript notation.			

AI-F.BF.3a : Using $f(x) + k$, $kf(x)$, and $f(x + k)$:	iii: Students move between different forms of mathematical
i) identify the effect on the graph when replacing $f(x)$ by	representation.
f(x + k), kf(x), and f(x + k) for specific values of k (both	
positive and negative);	v: Students organize information using a logical structure.
ii) find the value of k given the graphs;	
iii) write the new function using the value of k ; and	Objective D : Applying Mathematics in Real-Life Contexts
iv) use technology to experiment with cases and explore the	
effects on the graph. (Shared standard with Algebra II)	i: Students identify relevant elements of authentic real-life
Note: Tasks are limited to linear, quadratic, square root, and	situations.
absolute value functions; and exponential functions of the	
form $f(x) = a(b)^x$ where $a > 0$ and $b > 0$ $(b \neq 1)$.	ii: Students select appropriate mathematical strategies when
AI-F.LE.1: Distinguish between situations that can be modeled	solving authentic real-life situations.
with linear functions and exponential functions.	
AI-F.LE.1a: Justify that a function is linear because it grows by	iii: Students apply the selected mathematical strategies to reach
equal differences over equal intervals and that a function is	a solution.
exponential because it grows by equal factors over equal	
factors.	iv: Students explain the degree of accuracy of a solution.
AI-F.LE.1b: Recognize situations in which one quantity changes	
at a constant rate per unit interval relative to another and	v: Students explain whether a solution makes sense in the
therefore, can be modeled linearly.	context of the authentic real-life solution.
e.g., A flower grows two inches per day.	
AI-F.LE.1c: Recognize situations in which one quantity grows or	
decays by a constant rate per unit interval relative to another	
and therefore, can be modeled exponentially.	
e.g., A flower doubles in size each day.	
AI-F.LE.2: Construct a linear or exponential function	
symbolically given:	
i) a graph;	
ii) a description of the relationship;	
iii) two input-out pairs (including reading these from a table).	
(Shared standard with Algebra II)	

Note: Tasks are limited to constructing linear and exponential
functions in simple context (not multi-step).
AL-F.LE.3: Observe using graphs and tables that a quantity
increasing exponentially eventually exceeds a quantity
increasing linearly, graphically or (more generally) as a
polynomial function.
AI-F.LE.5: Interpret the parameters in a linear or exponential
function in terms of a context. (Shared standard with Algebra II)
Note: Tasks have a real-world context. Exponential functions
are limited to those with domains in the integers and are of
the form $f(x) = a(b)^x$ where $a > 0$ and $b > 0$ $(b \neq 1)$.

Summative Assessment	Relationship Between Summative Assessment Task and Statement of Inquiry
Goal : Using representations to model the changes in the relationship	Using representations to model the changes in the relationship
of patterns in real-life situations.	of patterns in real-life situations.
Role: Brandon Architecture, Inc.	
Audience: Builders, Homeowners	
Situation: You own a firm that specializes in roof designs. A	
customer came into your office requesting a special roof for	
their home. You showed the customer a design where the roof	
was in the shape of the letter V. The equation was $y =$	
2 x+2 - 6. You did not want the V to open up, width of the	
roof was too short, and the height of the roof was too low. You	
decided to write your own equation, $y = -2 x + 7 + 8$.	
Product: Roof Expansions	
1. Name the function by the given equation.	
2. Write the transformations that changed the original equation	
of the company to the one you described.	
3. Did the changes meet your specifications of your equation.	

Approaches to Learning (ATL)

Thinking: Use prioritization and order of precedence in problem-solving. Communication: Organize and interpret data using both analogue and digital tools.]

ACTION: Teaching and learning through inquiry

Content	Learning Process
Name the parent functions of the linear, quadratic, exponential,	Learning Experiences and Teaching Strategies
absolute-value, square root, and cubic functions.	Direct Instruction
Define transformation.	Group Activities
Define vertical and horizontal translations.	Independent Practice
Define reflection.	Formative Assessment
Define compression and stretch of a function.	Quizzes
Describe how a transformation, using the letter k in an	Tests
equation, changes the equation of the parent function.	Homework
Identify the change that occurs in each graph after a specific	Classwork
transformation.	
Sketch the change that occurs in each graph after a specific	
transformation.	
Identify the equation of a graph after transformation of the	
parent function.	
Differentiate between linear, quadratic, and exponential	
functions based on equations, graphs, and tables of values.	
Explain how the constant rate of change between intervals	
denotes a linear or exponential function.	

VOCABULARY	Differentiation
Parent Function	TI 84 & TI 30 Graphing Calculator
Vertical Translation	Student's IEP's
Horizontal Translation	Real life situations
Reflection	Student Options
Stretch (Vertical Dilation)	With Additional Teacher
Compression (Horizontal Dilation)	
Parameter	
Linear Function	
Quadratic Function Decay Growth	
Exponential Function Decay Growth	
Square Root Function	
Absolute Value Function	
Cubic Function	
Original Function (Pre-image)	
Interval	
Rate of Change (Constant & Average)	

Resources			
Teacher Created Worksheets	Computer Based Worksheets & Activities	Algebra Teachers' Activity Book	
Math Textbook	Delta Math	IXL	
Brain-Pop	www.jmap.org	Problem-Attic	
Teachers Pay Teachers	Kahn Academy	Kendrick Krause (YouTube)	

REFLECTION: Considering the planning, process and impact of the inquiry

Prior to Teaching the Unit	During Teaching	After Teaching the Unit
Why do we think that the unit or the	Why do we think that the unit or the	What were the learning outcomes of this
selection of topics will be interesting?	selection of topics will be interesting?	unit?
What do students already know, and	What do students already know, and	How well did the summative assessment
what can they do?	what can they do?	task serve to distinguish levels of
What have students encountered in this	What have students encountered in this	achievement? Was the task sufficiently
discipline before?	discipline before?	complex to allow students to reach the
What does my experience tell me about	What does my experience tell me about	highest levels?
what to expect in this unit?	what to expect in this unit?	What evidence of learning can we
What attributes of the learning profile	What attributes of the learning profile	identify? What artefacts of learning
does this unit offer students	does this unit offer students	should we document?
opportunities to develop?	opportunities to develop?	Which teaching strategies were effective?
What potential interdisciplinary	What potential interdisciplinary	Why?
connections can we identify?	connections can we identify?	What was surprising?
What do we know about my students'	What do we know about my students'	What student-initiated action did we
preferences and patterns of interaction?	preferences and patterns of interaction?	notice?
Are there any possible opportunities for	Are there any possible opportunities for	What will we do differently next time?
meaningful service learning?	meaningful service learning?	How will we build on our experience to
What in the unit might be inspiring for	What in the unit might be inspiring for	plan the next unit?
community or personal projects?	community or personal projects?	How effectively did we differentiate
Could we develop authentic	Could we develop authentic	learning in this unit?
opportunities for service learning?	opportunities for service learning?	What can students carry forward from
How can we use my students'	How can we use my students'	this unit to the unit? to the next year/
multilingualism as a resource for	multilingualism as a resource for	level of study?
learning?	learning?	Which subject groups could we work with
		next time?
		What did we learn from standardizing the
		assessment?