ABGS MIDDLE SCHOOL Unit Planner

ALGEBRA 1

UNIT 4 – Functions

Teacher (s)	T. Moran N. Davis D. Topping	Subject Group and Discipline	Advanced 8 Algebra 1		
Unit Title	Unit 4 Functions	MYP Year	4	Unit Duration	2 – 3 WEEKS

INQUIRY? Establishing the purpose of the unit

Key Concept	Related Concept(s)	Global Context
Relationships	Representation	Identities and Relationship
	Patterns	
	Model	

Statement of Inquiry
Conceptual Understanding: Representations and models of real-life situations are affected by changing patterns.
Statement of Inquiry: Relationships and identities of functions can be represented using equations, patterns, graphs, tables and models.
Inquiry Questions
Factual: What is a function and how are they represented?
Conceptual: How are you able to identify the relationships between functions?
Debatable: How do you apply what you have learned in functions to other aspects of your life?

MYP OBJECTIVES			
NYS Next Generation Standards	IB Objectives		
NY-8. F.1 : Understand that a function is a rule that assigns to	Objective A: Knowing and Understanding		
each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	i: Students select appropriate mathematics when solving problems in both familiar and unfamiliar situations.		
<i>Notes:</i> Function notation is not required in Grade 8. The terms domain and range may be introduced at this level; however, these terms are formally introduced in Algebra I (AI-	ii: Students apply the selected mathematics successfully when solving problems.		
F.IF.1).	iii: Students solve problems correctly in a variety of contexts.		
NY-8. F.2 ; Compare properties of two functions each represented in a different way (algebraically, graphically,	Objective C: Communicating		
numerically in tables, or by verbal descriptions). e.g., Given a linear function represented by a table of values and a linear function represented by an algebraic equation, determine which function has the greater rate of change.	 Students use appropriate mathematical language (notation, symbols and terminology) in both oral and written explanations. 		
<i>Note:</i> Function notation is not required in Grade 8. <u>NY-8. F.3:</u> Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line. Recognize examples of	ii. Students use appropriate forms of mathematical representation to present information.		
functions that are linear and non-linear. e.g., The function $A=S^2$ giving the area of a square as a function of its side length is not linear because its araph	 Students move between different forms of mathematical representation. 		
contains the points (1,1), (2,4), and (3,9), which are not on a straight line.	iv: Students communicate complete and coherent mathematical lines of reasoning.		
<i>Note</i> : Function notation is not required in Grade 8. <u>NY-8. F.4:</u> Construct a function to model a learning relationship	v: Students organize information using a logical structure.		
between two quantities. Determine the rate of change and initial value of the function from a description of a relationship	Objective D: Applying mathematics in real-life context.		
or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of	 Students identify relevant elements of authentic real-life situations. 		

a linear function in terms of the situation it models, and in	ii: Students select appropriate mathematical strategies when
terms of its graph or a table of values.	solving real-life situations.
Note: Function notation is not required in Grade 8. <u>NY-8.F.5:</u> Describe qualitatively the functional relationship between two quantities by analyzing a graph. Sketch a graph that exhibits the qualitative features of a function that has been described in a real-world context. <i>e.g., where the function is increasing or decreasing or when</i> <i>the function is linear or non-linear.</i> <i>Note:</i> Function notation is not required in Grade 8. <u>AI-F.IF.1:</u> Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$. Note: Domain and range can be expressed using inequalities, set builder notation, verbal description, and interval	solving real-life situations. iii: Students apply the selected mathematical strategies successfully to reach a solution. iv: Students explain the degree of accuracy of a solution. v: Students explain whether a solution makes sense in the context of the authentic real-life situation.
notations for functions of subsets of real numbers to	
the real numbers.	
 <u>AI-F.IF.2</u>: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. <u>AI-F.IF.3</u>: Recognize that a sequence is a function whose domain is a subset of the integers. ★ (Shared standard with Algebra II) Notes: Sequences (arithmetic and geometric) will be written 	
evolution and only in subscript potation	
explicitly and only in subscript notation.	

	Work with geometric sequences may involve an
,	even with geometric sequences may involve an r^{n-1}
	exponential equation formula of the form an - a ,
	where a is the first term and r is the common ratio.
AI-F.BF	<u>.1</u> : Write a function that describes a relationship
betwee	n two quantities.
★ (Shar	red standard with Algebra II)
AI-F.BF	.1a: Determine a function from context. Define a
sequen	ce explicitly or steps for calculation from a context.
★ (Shar	red standard with Algebra II)
Notes:	
	Algebra I tasks are limited to linear, quadratic and
	exponential functions of the form f(x) = ab^x where a >
	0 and b > 0 (b ≠ 1).
	Work with geometric sequences may involve an
	exponential equation/formula of the form an = arn-1,
	where a is the first term and r is the common ratio.
	Sequences will be written explicitly and only in
	subscript notation
<u>AI-F.IF.</u>	<u>4</u> : For a function that models a relationship between two
quantit	ies
i)	interpret key features of graphs and tables in terms
	of the quantities; and
ii)	sketch graphs showing key features given a verbal
	description of the relationship.
🛨 (Shar	red standard with Algebra II)
Notes:	
	Algebra I key features include the following: intercepts,
	zeros; intervals where the function is increasing,

decreasing, positive, or negative; maxima, minima; and symmetries.

Tasks have a real-world context and are limited to the following functions: linear, quadratic, square root, piece-wise defined (including step and absolute value), and exponential functions of the form f(x) = ab^x where a > 0 and b > 0 (b≠1).

<u>AI-F.IF.5</u>: Determine the domain of a function from its graph and, where applicable, identify the appropriate domain for a function in context

<u>AI-F.IF.6</u>: Calculate and interpret the average rate of change of a function over a specified interval.

★ (Shared standard with Algebra II) *Notes:*

- Functions may be presented by function notation, a table of values, or graphically.
- Algebra I tasks have a real-world context and are limited to the following functions: linear, quadratic, square root, piecewise defined (including step and absolute value), and exponential functions of the form f(x) = ab^x where a > 0 and b > 0, (b ≠ 1).

<u>AI-F.IF.7</u>: Graph functions and show key features of the graph by hand and by using technology where appropriate.

★ (Shared standard with Algebra II)

<u>AI-F.IF.7a</u>: Graph linear, quadratic, and exponential functions and show key features.

Notes:

Algebra I key features include the following: intercepts, zeros; intervals where the function is increasing, decreasing, positive, or negative; maxima, minima; and symmetries.

- Exponential functions are of the form f(x) = a(b)x where a > 0 and b > 0 (b ≠ 1).
- Graphing linear functions is a fluency recommendation for Algebra I. Students become fluent in solving characteristic problems involving the analytic geometry of lines, such as writing down the equation of a line given a point and a slope. Such fluency can support them in solving less routine mathematical problems involving linearity; as well as modeling linear phenomena.

<u>AI-F.IF.7b</u>: Graph square root, and piecewise-defined functions, including step functions and absolute value functions and show key features.

Note:

Algebra I key features include the following: intercepts, zeros; intervals where the function is increasing, decreasing, positive, or negative; maxima, minima; and symmetries

<u>AI-F.IF.8</u>: Write a function in different but equivalent forms to reveal and explain different properties of the function.

★ (Shared standard with Algebra II)

<u>AI-F.IF.8a</u>: For a quadratic function, use an algebraic process to find zeros, maxima, minima, and symmetry of the graph, and interpret these in terms of context.

Note:

Algebraic processes include but not limited to factoring, completing the square, use of the quadratic formula, and the use of the axis of symmetry.

AI-F.IF.9: Compare properties of two functions each	
represented in a different way (algebraically, graphically,	
numerically in tables, or by verbal descriptions).	
★ (Shared standard with Algebra II)	
Note:	
Algebra I tasks are limited to the following functions: linear,	
quadratic, square root, piecewise defined (including step and	
absolute value), and exponential functions of the form f(x) =	
ab^x where a > 0 and b > 0 (b \neq 1).	

Summative Assessment	Relationship Between Summative Assessment Task
	and Statement of Inquiry
Goal: Students will use their current knowledge of functions to	Relationships and identities of functions can be determined
compare population changes during the Great Migration North.	through the use of equations, patterns, graphs, tables and
They will choose the migration changes from either the states of	models.
South Carolina to New York or Mississippi to Illinois. Time	
periods to use will be the 1920's through 1950's. Additionally,	
students will use their knowledge of the United States History to	
identify key historical events that contributed to any drastic	
variations in population estimates.	
Role: You are a census director.	
Audience: Community Developers and Politicians	
Situation: Create a graph of a function that describes the	
population of the state pre and after the migration north.	
Create a different graph to compare the destination state pre	
and after the migration. The projects` directions say that you	
can choose any state but must discuss one important historical	
event that directly impacted that states` population. You decide	
to research census information for your states and create a	
function to model the population decrease (decay) and growth.	

Using this function, you can show your U.S. History teacher how you can predict populations in the future.	
 Students will be able to create graphs of functions. Write the equation of the graph of the function. Calculate the rate of change in the population decrease and growth for their chosen states. Predict the number of representatives for Congress that the states lost or gain because of this migration. 	

Approaches to Learning (ATL)

Thinking: Use prioritization and order of precedence in problem-solving.

Communication: Organize and interpret data using both analogue and digital tools.

Research: Use a variety of technologies and media platforms, including social media and online networks to source information

ACTION: Teaching and learning through inquiry

Content	Learning Process
Find the domain and range from a set of ordered pairs.	Learning Experiences and Teaching Strategies
Find the domain and range from a graph.	Direct Instruction
Function Notation	Partner Work for Practice
Differentiate between a relation and a function.	Group Collaboration
Define the vertical line test.	Modeling
Use mapping diagram to describe a relation or a function.	Problem Solving
Recognize the family of functions by their table of values,	Practice Problems at the Board
graphs and/or equation.	Think-Pair-Share
Define interval notation.	
Evaluate functions for their domain(s).	

Calculate the domain of a function given the range.	
Describe the key features of a function; linear, quadratic,	
exponential, absolute value, square root and/or cube.	
Differentiate between exponential growth and exponential	
decay.	
Graph linear and non-linear functions from a table of values or	
an equation.	
Write an arithmetic sequence.	
Write a geometric sequence.	
Create equation of a function.	
Compare Functions using a table of value or a graph.	
Determine the average rate of change of non-linear functions.	
VOCABULARY	Formative Assessment
Domain, Range, Interval Notation, Function Notation,	Quizzes
Exponential Growth, Exponential Decay, Linear Function,	Tests
Quadratic Function, Absolute Value Function, Square Root	Homework
Function, Cube Function, Piece-wise Function, Step Function,	Classwork
Key Features such as, increasing, decreasing, maxima, minima,	Differentiation
positive or negative, symmetries, x- and y-intercepts. Relation,	Technology
Function, Vertical Line Test, Restrictions on the Domain,	Graphing calculator
Arithmetic Sequence, Geometric Sequence, Average Rate of	Tiered worksheet
Change	

Resources			
Teacher Created Worksheets	Computer Based Worksheets & Activities	Algebra Teachers' Activity Book	
Math Textbook	Delta Math	IXL	
Brain-Pop	www.jmap.org	Problem-Attic	
Teachers Pay Teachers	Kahn Academy	Kendrick Krause (YouTube)	
Dan Mayer videos			

Prior to Teaching the Unit	During Teaching	After Teaching the Unit
Why do we think that the unit or the	Why do we think that the unit or the	What were the learning outcomes of this
selection of topics will be interesting?	selection of topics will be interesting?	unit?
What do students already know, and	What do students already know, and	How well did the summative assessment
what can they do?	what can they do?	task serve to distinguish levels of
What have students encountered in this	What have students encountered in this	achievement? Was the task sufficiently
discipline before?	discipline before?	complex to allow students to reach the
What does my experience tell me about	What does my experience tell me about	highest levels?
what to expect in this unit?	what to expect in this unit?	What evidence of learning can we
What attributes of the learning profile	What attributes of the learning profile	identify? What artefacts of learning
does this unit offer students	does this unit offer students	should we document?
opportunities to develop?	opportunities to develop?	Which teaching strategies were effective?
What potential interdisciplinary	What potential interdisciplinary	Why?
connections can we identify?	connections can we identify?	What was surprising?
What do we know about my students'	What do we know about my students'	What student-initiated action did we
preferences and patterns of interaction?	preferences and patterns of interaction?	notice?
Are there any possible opportunities for	Are there any possible opportunities for	What will we do differently next time?
meaningful service learning?	meaningful service learning?	How will we build on our experience to
What in the unit might be inspiring for	What in the unit might be inspiring for	plan the next unit?
community or personal projects?	community or personal projects?	How effectively did we differentiate
Could we develop authentic	Could we develop authentic	learning in this unit?
opportunities for service learning?	opportunities for service learning?	What can students carry forward from
How can we use my students'	How can we use my students'	this unit to the unit? to the next year/
multilingualism as a resource for	multilingualism as a resource for	level of study?
learning?	learning?	Which subject groups could we work with
		next time?
		What did we learn from standardizing the
		assessment?